Part Number Hot Search : 
48S15 M6MGB PESD5V 47LF100 AD9868 74HC670N FJB3307D MDLS16
Product Description
Full Text Search
 

To Download IRL40B209 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  strong ir fet? IRL40B209 hexfet ? power mosfet d s g application ? ? brushed motor drive applications ? ? bldc motor drive applications ?? battery powered circuits ? ? half-bridge and full-bridge topologies ? ? synchronous rectifier applications ? ? resonant mode power supplies ? ? or-ing and redundant power switches ? ? dc/dc and ac/dc converters ? ? dc/ac inverters benefits ? ? optimized for logic level drive ? ? improved gate, avalanche and dynamic dv/dt ruggedness ? ? fully characterized capacitance and avalanche soa ? ? enhanced body diode dv/dt and di/dt capability ? ? lead-free ? ? rohs compliant, halogen-free ? fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature to-220ab IRL40B209 s d g g d s gate drain source base part number package type standard pack form quantity IRL40B209 to-220 tube 50 IRL40B209 orderable part number 1 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 v dss 40v r ds(on) typ. 1.0m ?? max 1.25m ?? i d (silicon limited) 414a ? i d (package limited) 195a 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 350 400 450 i d , d r a i n c u r r e n t ( a ) limited by package 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 1 2 3 4 5 6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 100a t j = 25c t j = 125c
2 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 absolute maximum rating symbol parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 414 ? a ? i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) 293 ? i dm pulsed drain current ?? 1707 ? p d @t c = 25c maximum power dissipation 375 w linear derating factor 2.5 w/c v gs gate-to-source voltage 20 v t j t stg operating junction and storage temperature range -55 to + 175 ? c ? soldering temperature, for 10 seconds (1.6mm from case) 300 mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) ? avalanche characteristics ? e as (thermally limited) single pulse avalanche energy ?? 730 mj e as (thermally limited) single pulse avalanche energy ?? 1420 i ar avalanche current ? see fig 15, 16, 23a, 23b a e ar repetitive avalanche energy ? mj thermal resistance ? symbol parameter typ. max. units r ? jc junction-to-case ?? ??? 0.4 c/w ? r ? cs case-to-sink, flat greased surface 0.50 ??? r ? ja junction-to-ambient ? ??? 62 i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) 195 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.031 ??? v/c reference to 25c, i d = 5ma ? r ds(on) ??? 1.0 1.25 m ??? v gs = 10v, i d = 100a ? ??? 1.2 1.6 v gs = 4.5v, i d = 50a ? v gs(th) gate threshold voltage 1.0 ??? 2.4 v v ds = v gs , i d = 250a i dss drain-to-source leakage current ??? ??? 1.0 a v ds =40 v, v gs = 0v ??? ??? 150 v ds =40v,v gs = 0v,t j =125c i gss gate-to-source forward leakage ??? ??? 100 na v gs = 20v gate-to-source reverse leakage ??? ??? -100 v gs = -20v r g gate resistance ??? 2.1 ??? ?? static drain-to-source on-resistance notes: ?? calculated continuous current based on maximum allowable junction temperature. bond wire current lim it is 195a. note that current limitations arising fr om heating of the device leads may occur with some lead mounting arrangements. (refer to an-1140) ? repetitive rating; pulse width limited by max. junction temperature. ?? limited by t jmax , starting t j = 25c, l = 0.15mh,r g = 50 ? , i as = 100a, v gs =10v. ? i sd ? 100a, di/dt ? 930a/s, v dd ? v (br)dss , t j ? 175c. ? pulse width ? 400s; duty cycle ? 2%. ? c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . ?? c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss ? r ? is measured at t j approximately 90c. ? limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 ? , i as = 53a, v gs =10v. ? ? pulse drain current is limited at 780a by source bonding technology.
3 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 d s g dynamic electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units conditions gfs forward transconductance 270 ??? ??? s v ds = 10v, i d =100a q g total gate charge ??? 180 270 i d = 100a q gs gate-to-source charge ??? 51 ??? v ds = 20v q gd gate-to-drain charge ??? 88 ??? v gs = 4.5v ? q sync total gate charge sync. (qg ? qgd) ??? 92 ??? t d(on) turn-on delay time ??? 56 ??? ns v dd = 20v t r rise time ??? 198 ??? i d = 30a t d(off) turn-off delay time ??? 188 ??? r g = 2.7 ?? t f fall time ??? 150 ??? v gs = 4.5v ? c iss input capacitance ??? 15140 ??? pf ? v gs = 0v c oss output capacitance ??? 1990 ??? v ds = 25v c rss reverse transfer capacitance ??? 1370 ??? ? = 1.0mhz, see fig.7 c oss eff.(er) effective output capacitance ??? 2340 ??? v gs = 0v, vds = 0v to 32v ? c oss eff.(tr) output capacitance (time related) ??? 2900 ??? v gs = 0v, vds = 0v to 32v ? diode characteristics ? symbol parameter min. typ. max. units conditions i s continuous source current ??? ??? 414 ? a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 1707 ? integral reverse (body diode) ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.2 v t j = 25c,i s = 100a,v gs = 0v ?? dv/dt peak diode recovery dv/dt ?? ??? 2.4 ??? v/ns t j = 175c,i s = 100a,v ds = 40v t rr reverse recovery time ??? 41 ??? ns t j = 25c v dd = 34v ??? 42 ??? t j = 125c i f = 100a, q rr reverse recovery charge ??? 46 ??? nc t j = 25c di/dt = 100a/s ??? ??? 50 ??? t j = 125c ? i rrm reverse recovery current ??? 2.0 ??? a t j = 25c ? nc ?
4 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 fig 6. normalized on-resistance vs. temperature fig 5. typical transfer characteristics fig 4. typical output characteristics fig 3. typical output characteristics fig 7. typical capacitance vs. drain-to-source voltage fig 8. typical gate charge vs . gate-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.0v 4.5v 4.0v bottom 3.5v ? 60s pulse width tj = 25c 3.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.0v 4.5v 4.0v bottom 3.5v ? 60s pulse width tj = 175c 3.5v 1 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v ? 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 50 100 150 200 250 300 350 400 450 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v v ds = 8v i d = 100a
5 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 fig 10. maximum safe operating area fig 9. typical source-drain diode forward voltage fig 13. typical on-resistance vs. drain current fig 11. drain-to-source breakdown voltage fig 12. typical c oss stored energy -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 40 42 44 46 48 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5.0ma 0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -5 0 5 10 15 20 25 30 35 40 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 e n e r g y ( j ) 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by rds(on) 100sec dc limited by package 0 20 40 60 80 100 120 140 160 180 200 i d , drain current (a) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) vgs = 3.5v vgs = 4.5v vgs = 6.0v vgs = 8.0v vgs = 10v
6 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 fig 14. maximum effective transient thermal impedance, junction-to-case fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1.avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long as t jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 23a, 23b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figures14, 15). t av = average time in avalanche. d = duty cycle in avalanche = tav f z thjc (d, t av ) = transient thermal resistance, see figure 14) pd (ave) = 1/2 ( 1.3bvi av ) = ? t/ z thjc i av = 2 ? t/ [1.3bvz th ] e as (ar) = p d (ave) t av ?? fig 15. avalanche current vs. pulse width 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r ma l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse)
7 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 fig 17. threshold voltage vs. temperature fig 21. typical stored charge vs. dif/dt fig 18. typical recovery current vs. dif/dt fig 19. typical recovery current vs. dif/dt fig 20. typical stored charge vs. dif/dt -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/s) 0 2 4 6 8 10 12 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 2 4 6 8 10 12 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 40 80 120 160 200 240 280 320 360 400 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 40 80 120 160 200 240 280 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c
8 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 fig 22. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 23a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 24a. switching time test circuit fig 25a. gate charge test circuit t p v (br)dss i as fig 23b. unclamped inductive waveforms fig 24b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 25b. gate charge waveform vdd ?
9 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 to-220ab package outline (dimensions are shown in millimeters (inches)) to-220ab part marking information note: for the most current drawing please refer to ir website at http://www.irf.com/package/ in t e r n a t io n a l part number r e c t if ie r lo t c o d e assem bly lo g o year 0 = 2000 date code w eek 19 lin e c lot code 1789 e x a m p l e : t h is is a n ir f 1 0 1 0 n o te : "p " in a s s e m b ly lin e p o s itio n indicates "lead - free" in th e assem bly lin e "c " assem bled o n w w 19, 2000 to-220ab packages are not recommended for surface mount application .
10 www.irf.com ? 2015 international rectifier submit datasheet feedback may 18, 2015 ? IRL40B209 ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability/ ?? applicable version of jedec standar d at the time of product release. qualification information ? ? qualification level ? industrial (per jedec jesd47f) ?? moisture sensitivity level to-220 n/a rohs compliant yes ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/


▲Up To Search▲   

 
Price & Availability of IRL40B209

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X